6 resultados para genetic trait

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The BEACON gene was initially identified using the differential display polymerase chain reaction on hypothalamic mRNA samples collected from lean and obese Psammomys obesus, a polygenic animal model of obesity. Hypothalamic BEACON gene expression was positively correlated with percentage of body fat, and intracerebroventricular infusion of the Beacon protein resulted in a dose-dependent increase in food intake and body weight. The human homolog of BEACON, UBL5, is located on chromosome 19p in a region previously linked to quantitative traits related to obesity. Our previous studies showed a statistically significant association between UBL5 sequence variation and several obesity- and diabetes-related quantitative physiological measures in Asian Indian and Micronesian cohorts. Here we undertake a replication study in a Mexican American cohort where the original linkage signal was first detected. We exhaustively resequenced the complete gene plus the putative promoter region for genetic variation in 55 individuals and identified five single nucleotide polymorphisms (SNPs), one of which was novel. These SNPs were genotyped in a Mexican American cohort of 900 individuals from 40 families. Using a quantitative trait linkage disequilibrium test, we found significant associations between UBL5 genetic variants and waist-to-hip ratio (p = 0.027), and the circulating concentrations of insulin (p = 0.018) and total cholesterol (p = 0.023) in fasted individuals. These data are consistent with our earlier published studies and further support a functional role for the UBL5 gene in influencing physiological traits that underpin the development of metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic inflammation has a pathological role in many common diseases and is influenced by both genetic and environmental factors. Here we assess the role of genetic variation in selenoprotein S (SEPS1, also called SELS or SELENOS), a gene involved in stress response in the endoplasmic reticulum and inflammation control. After resequencing SEPS1, we genotyped 13 SNPs in 522 individuals from 92 families. As inflammation biomarkers, we measured plasma levels of IL-6, IL-1b and TNF-a. Bayesian quantitative trait nucleotide analysis identified associations between SEPS1 polymorphisms and all three proinflammatory
cytokines. One promoter variant, 105G-A, showed strong evidence for an association with each cytokine (multivariate P = 0.0000002). Functional analysis of this polymorphism showed that the A variant significantly impaired SEPS1 expression after exposure to endoplasmic reticulum stress agents (P = 0.00006). Furthermore, suppression of SEPS1 by short interfering RNA in macrophage cells increased the release of IL-6 and TNF-a. To investigate further the significance of the observed associations, we genotyped 105G-A in 419 Mexican American individuals from 23 families for replication. This analysis confirmed a significant
association with both TNF-a (P = 0.0049) and IL-1b (P = 0.0101). These results provide a direct mechanistic link between SEPS1 and the production of inflammatory cytokines and suggest that SEPS1 has a role in mediating inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we report for the first time, to our knowledge, a strong correlation between a measure of individual genetic diversity and song complexity, a sexually selected male trait in sedge warblers, Acrocephalus schoenobaenus. We also find that females prefer to mate with males who will maximize this diversity in individual progeny. The genetic diversity of each offspring is further increased by means of nonrandom fertilization, as we also show that the fertilizing sperm contains a haplotype more genetically distant to that of the egg than expected by chance. These findings suggest that species' mating preferences may be subject to fine tuning aimed at increasing offspring viability through increased genetic diversity. This includes external and internal mechanisms of selection, even within the ejaculate of a single male.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given their involvement in processes necessary for life, mitochondrial damage and subsequent dysfunction can lead to a wide range of human diseases. Previous studies of both animal models and humans have suggested that presenilins-associated rhomboid-like protein (PARL) is a key regulator of mitochondrial integrity and function, and plays a role in cellular apoptosis. As a surrogate measure of mitochondrial integrity, we previously measured mitochondrial content in a Caucasian population consisting of large extended pedigrees, with results highlighting a substantial genetic component to this trait. To assess the inXuence of variation in the PARL gene on mitochondrial content, we re-sequenced 6.5 kb of the gene, identifying 16 SNPs and genotyped these in 1,086 Caucasian individuals, distributed across 170 families. Statistical genetic analysis revealed that one promoter variant, T-191C, exhibited signiWcant eVects (after correction for multiple testing) on mitochondrial content levels. Comparison of the transcription factor binding characteristics of the T-191C promoter SNP by EMSA indicates preferential binding of nuclear factors to the T allele, suggesting functional variation in PARL expression. These results suggest that genetic variation within PARL inXuences mitochondrial abundance and integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natal dispersal is an important life history trait driving variation in individual fitness, and therefore, a proper understanding of the factors underlying dispersal behaviour is critical to many fields including population dynamics, behavioural ecology and conservation biology. However, individual dispersal patterns remain difficult to quantify despite many years of research using direct and indirect methods. Here, we quantify dispersal in a single intensively studied population of the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps) using genetic networks created from the combination of pairwise relatedness data and social networking methods and compare this to dispersal estimates from re-sighting data. This novel approach not only identifies movements between social groups within our study sites but also provides an estimation of immigration rates of individuals originating outside the study site. Both genetic and re-sighting data indicated that dispersal was strongly female biased, but the magnitude of dispersal estimates was much greater using genetic data. This suggests that many previous studies relying on mark–recapture data may have significantly underestimated dispersal. An analysis of spatial genetic structure within the sampled population also supports the idea that females are more dispersive, with females having no structure beyond the bounds of their own social group, while male genetic structure expands for 750 m from their social group. Although the genetic network approach we have used is an excellent tool for visualizing the social and genetic microstructure of social animals and identifying dispersers, our results also indicate the importance of applying them in parallel with behavioural and life history data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Males from different populations of the same species often differ in their sexually selected traits. Variation in sexually selected traits can be attributed to sexual selection if phenotypic divergence matches the direction of sexual selection gradients among populations. However, phenotypic divergence of sexually selected traits may also be influenced by other factors, such as natural selection and genetic constraints. Here, we document differences in male sexual traits among six introduced Australian populations of guppies and untangle the forces driving divergence in these sexually selected traits. Using an experimental approach, we found that male size, area of orange coloration, number of sperm per ejaculate and linear sexual selection gradients for male traits differed among populations. Within populations, a large mismatch between the direction of selection and male traits suggests that constraints may be important in preventing male traits from evolving in the direction of selection. Among populations, however, variation in sexual selection explained more than half of the differences in trait variation, suggesting that, despite within-population constraints, sexual selection has contributed to population divergence of male traits. Differences in sexual traits were also associated with predation risk and neutral genetic distance. Our study highlights the importance of sexual selection in trait divergence in introduced populations, despite the presence of constraining factors such as predation risk and evolutionary history.